

LECTURE 6 A.L. HEND MUSLIM JASIM

1 Basrah University
Faculty of Education for Pure Sciences
Computer Department

Grammar: (Context free grammar CFG) is a finite set of formal rules that are generating
syntacticaly correct sentences. The formal definition of grammar is that it is defined as four
tuples − G=(N,T,P,S)

• G is a grammar, which consists of a set of production rules. It is used to generate the
strings of a language.

• T is the final set of terminal symbols. It is denoted by lower case letters.

• N is the final set of non-terminal symbols. It is denoted by capital letters.

• P is a set of production rules, which is used for replacing non-terminal symbols (on the
left side of production) in a string with other terminals (on the right side of production).

• S is the start symbol used to derive the string.

Grammar is composed of two basic elements

Terminal Symbols - Terminal symbols are the components of the sentences that are generated
using grammar and are denoted using small case letters like a, b, c . . . etc.

Non-Terminal Symbols - Non-Terminal Symbols take part in the generation of the sentence but
are not the component of the sentence. These types of symbols are also called Auxiliary Symbols
and Variables. They are represented using a capital letter like A, B, C, . . . etc.

Example 1

Consider a grammar G = (N , T , P , S) Where,

N = {S , A , B } ⇒ Non-Terminal symbols

T = {a, b} ⇒ Terminal symbols

Production rules P = {S → ABa , A → BB , B → ab , AA → b }

S = { S } ⇒ Start symbol

Example 2

Consider a grammar G=(N,T,P,S) Where,

N= {S, A, B} ⇒ non terminal symbols

T = {0,1} ⇒ terminal symbols

Production rules P = {S→A1B, A→0A| λ, B→0B| 1B| λ}

S= {S} ⇒ start symbol.

LECTURE 6 A.L. HEND MUSLIM JASIM

2 Basrah University
Faculty of Education for Pure Sciences
Computer Department

Derivation: is a sequence of production rules. It is used to get input strings. During parsing, we
have to take two decisions, which are as follows

We have to decide the non-terminal which is to be replaced and We have to decide the
production rule by which the non-terminal will be replaced.

Two options to decide which non-terminal has to be replaced with the production rule are as
follows: −

- Left most derivation

In the leftmost derivation, the input is scanned and then replaced with the production rule
from left side to right. So, we have to read that input string from left to right.

Example

Production rules: E=E+E (rule1), E=E-E (rule2), E=a|b (rule3)

Let the input be a-b+a

when we perform the Left Most Derivation, the result will be as follows: −

E=E+E

E=E-E+E from rule2

E=a-E+E from rule3

E=a-b+E from rule3

E=a-b+a from rule3

Finally, the given string is parsed

- Right Most Derivation

In Right most derivation, the input is scanned and replaced with the production rule right to
left. So, we have to read the input string from right to left.

Example

Production rule: E=E+E (rule1), E=E-E (rule2), E=a|b (rule3)

Let the input be a-b+a

 when we perform the Right Most Derivation, we get the following result: −

E=E-E

E=E-E+E from rule1

E=E-E+a from rule3

E=E-b+a from rule3

E=a-b+a from rule3

LECTURE 6 A.L. HEND MUSLIM JASIM

3 Basrah University
Faculty of Education for Pure Sciences
Computer Department

Types Of Grammars: Grammar can be divided onto: -

- Type of Production Rules
- Number of Derivation Trees
- Number of Strings

Chomsky Normal Form A CFG is in Chomsky Normal Form if the Productions are in the following
forms :−

 A → a , A → BC, S → λ where A, B, and C are non-terminals and a is terminal.

Algorithm to Convert into Chomsky Normal Form: −

Step 1 − If the start symbol S occurs on some right side, create a new start symbol S’ and a new
production S’→ S.

Step 2 − Remove Null productions. (Using the Null production removal algorithm discussed
earlier)

Step 3 − Remove unit productions. (Using the Unit production removal algorithm discussed
earlier)

Step 4 − Replace each production A → B1…Bn where n > 2 with A → B1C where C → B2 …Bn.
Repeat this step for all productions having two or more symbols in the right side.

Step 5 − If the right side of any production is in the form A → aB where a is a terminal and A,
B are non-terminal, then the production is replaced by A → XB and X → a. Repeat this step for
every production which is in the form A → aB.

Problem

Convert the following CFG into CNF

S → ASA | aB, A → B | S, B → b | λ

LECTURE 6 A.L. HEND MUSLIM JASIM

4 Basrah University
Faculty of Education for Pure Sciences
Computer Department

Solution

(1) Since S appears in R.H.S, we add a new state S0 and S0→S is added to the production set and
it becomes −

S0→S, S→ ASA | aB, A → B | S, B → b | λ

(2) Now we will remove the null productions −

B → λ and A → λ

After removing B → ε, the production set becomes −

S0→S, S→ ASA | aB | a, A → B | S | ∈, B → b

After removing A →λ, the production set becomes −

S0→S, S→ ASA | aB | a | AS | SA | S, A → B | S, B → b

(3) Now we will remove the unit productions.

After removing S → S, the production set becomes −

S0→S, S→ ASA | aB | a | AS | SA, A → B | S, B → b

After removing S0→ S, the production set becomes −

S0→ ASA | aB | a | AS | SA, S→ ASA | aB | a | AS | SA

A → B | S, B → b

After removing A→ B, the production set becomes −

S0 → ASA | aB | a | AS | SA, S→ ASA | aB | a | AS | SA

A → S | b

B → b

After removing A→ S, the production set becomes −

S0 → ASA | aB | a | AS | SA, S→ ASA | aB | a | AS | SA

A → b |ASA | aB | a | AS | SA, B → b

(4) Now we will find out more than two variables in the R.H.S

Here, S0→ ASA, S → ASA, A→ ASA violates two Non-terminals in R.H.S.

Hence, we will apply step 4 and step 5 to get the following final production set which is in CNF:-

S0→ AX | aB | a | AS | SA

S→ AX | aB | a | AS | SA

A → b |AX | aB | a | AS | SA

LECTURE 6 A.L. HEND MUSLIM JASIM

5 Basrah University
Faculty of Education for Pure Sciences
Computer Department

B → b

X → SA

(5) We have to change the productions S0→ aB, S→ aB, A→ aB

And the final production set becomes −

S0→ AX | YB | a | AS | SA

S→ AX | YB | a | AS | SA

A → b A → b |AX | YB | a | AS | SA

B → b

X → SA

Y → a

Derivations and Parse Trees

Derivations mean replacing a given string’s non-terminal by the right-hand side of the production
rule. The sequence of applications of rules that makes the completed string of terminals from the
starting symbol is known as derivation. The parse tree is the pictorial representation of
derivations. Therefore, it is also known as derivation trees. The derivation tree is independent of
the other in which productions are used.

A parse tree is an ordered tree in which nodes are labeled with the left side of the productions
and in which the children of a node define its equivalent right parse tree also known as syntax
tree, generation tree, or production tree.

A Parse Tree for a CFG G =(V,∑, P,S) is a tree satisfying the following conditions: −

• Root has the label S, where S is the start symbol.

• Each vertex of the parse tree has a label which can be a variable (V), terminal (Σ), or ε.

• If A → C1, C2, . . . Cn is a production, then C1, C2, . . . Cn are children of node labeled A.

• Leaf Nodes are terminal (Σ), and Interior nodes are variable (V).

• The label of an internal vertex is always a variable.

• If a vertex A has k children with labels A1, A2…….Ak, then A →A1,A2…….Ak will be production
in context-free grammar G.

Yield − Yield of Derivation Tree is the concatenation of labels of the leaves in left to right ordering.

Example1 − If CFG has productions.

S → a A S | a

A → Sb A | SS | ba

LECTURE 6 A.L. HEND MUSLIM JASIM

6 Basrah University
Faculty of Education for Pure Sciences
Computer Department

Show that S ⇒ aa bb aa & construct parse tree whose yield is aa bb aa.

Solution

S ⇒a A S
⇒ a SbAS
⇒ aabAS
⇒ aa bbaS

∴ S ⇒ aa bb aa

Derivation Tree

Yield = Left to Right Ordering of Leaves = aa bb aa

Example2: - Consider the CFG

S → bB | aA

A → b | bS | aAA

B → a |aS | bBB

Find (a) Leftmost, (b) Rightmost Derivation for string b aa baba and (c) derivation Trees.
Solution

a) Leftmost Derivation
S⇒b B
⇒ bb BB
⇒ bbaB
⇒ bbaaS
⇒ bbaabB
⇒ bb aa b aS
⇒ bb aa bab B

⇒ bb aa ba ba

LECTURE 6 A.L. HEND MUSLIM JASIM

7 Basrah University
Faculty of Education for Pure Sciences
Computer Department

• Rightmost Derivation
S ⇒ bB
⇒ bb BB
⇒ bbBaS
⇒ bbBabB
⇒ bbBabaS
⇒ bbBababB
⇒ bbBabab a
⇒ bbaababa

Example3 − Consider the Grammar given below: −

E⇒ E+E|E ∗E|id
Find: - Leftmost, -Rightmost Derivation for the string.

Solution
-Leftmost Derivation
E ⇒ E+E
⇒ E+E+E
⇒ id+E+E
⇒ id+id+E
⇒ id+id+id

• Rightmost Derivation
E ⇒ E+E
⇒ E+E+E

⇒ E+E+id

⇒ E+id+id

⇒ id+id+id

LECTURE 6 A.L. HEND MUSLIM JASIM

8 Basrah University
Faculty of Education for Pure Sciences
Computer Department

Ambiguity in Grammar: A grammar is said to be ambiguous if there exists more than one left
most derivation or more than one right most derivation or more than one parse tree for a given
input string.

If the grammar is not ambiguous then we call it unambiguous grammar, If the grammar has
ambiguity, then it is not good for compiler construction, and No method can automatically detect
and remove the ambiguity, but we can remove the ambiguity by re-writing the whole grammar
without ambiguity.

Example: Let us consider a grammar with production rules, as shown below : −

E = I

E = E+E

E = E*E

E = (E)

I = ε|0|1|2|3...9

Let's consider a string "3*2+5"

If the above grammar generates two parse trees by using Left most derivation (LMD) then, we
can say that the given grammar is ambiguous grammar.

Since there are two parse trees for a single string, then we can say the given grammar is
ambiguous grammar.

Example : Check whether the grammar is ambiguous or not.

 A --> AA
 A-->(A)
 A-->a

For the string "a(a)(a)a" the above grammar can generate two parse trees, as given below: −

LECTURE 6 A.L. HEND MUSLIM JASIM

9 Basrah University
Faculty of Education for Pure Sciences
Computer Department

Rules: To convert the ambiguous grammar to the unambiguous grammar, we apply the following
rules :−

Rule 1 − If the left associative operators (+ ,- , * , /) are used in the production rule, then apply
left recursion in the production rule. Left recursion is nothing but left most symbol on the right
side is the same as the non-terminal on the left side. For Example X--> Xa

Rule 2 − If the right associative operator (^) is used in the production rule then apply right
recursion in the production rule.

Right recursion is nothing but right most symbols on the left side are the same as the nonterminal
on the right side. For example, X--> aX

Example: Consider a grammar G is given as follows:

S → AB | aaB
A → a | Aa
B → b

Determine whether the grammar G is ambiguous or not. If G is ambiguous, construct an
unambiguous grammar equivalent to G.

Solution: Let us derive the string "aab"

LECTURE 6 A.L. HEND MUSLIM JASIM

10 Basrah University
Faculty of Education for Pure Sciences
Computer Department

As there are two different parse trees for deriving the same string, the given grammar is
ambiguous.

Unambiguous grammar will be:

S → AB

A → Aa | a

B → b

Example: Show that the given grammar is ambiguous. Also, find an equivalent unambiguous
grammar.
E → E + E
E → E * E
E → id
Solution: Let us derive the string "id + id * id"

As there are two different parse trees for deriving the same string, the given grammar is
ambiguous.
Unambiguous grammar will be:
E → E + T
E → T
T → T * F
T → F
F → id

	Example 1
	Example 2
	Problem
	Solution

	Derivations and Parse Trees
	Derivation Tree

